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What do you think cardiac modeling is
all about?

https://insilicotrials.com/working-on-a-new-european-
R project-that-will-leverage-simulation-to-help-fight-
cardiovascular-disease/

https://gifdb.com/gif/beating-human-
heart-3d-real-animation-
ndugdstfj863rnow.html
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I am not a biologist

. 2014: Master: NTNU — Applied mathematics

. 2014-2017: PhD Scientific computing — Cardiac modeling
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The long term goal is to use models to assist

clinicians in the descision making

Physics

Patient

Physiology
Niederer, Steven A., Joost Lumens, and Natalia A. Trayanova. "Computational models in cardiology." Nature reviews cardiology 16.2 (2019): 100-111.
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We can forecast the weather, but would we
be able to do the same with the heart?




Models can be used to compute quatities
that are difficult / impossible to measure

For example: forces / stresses in Lateral
the heart

4 N

Validation is hard

Development of new
biomarkers




Models can be used to test if a drug is
safe / efficient

baseline dofetilide 30x
t=50ms

t=50ms t=100ms

-100 mV  transmembrane potential +70 mV
E— - - .

baseline
dofetilide 30x

0 1000 2000 time [ms] 3000 4000 5000 0 1000 2000 time[ms] 3000 4000 5000

Kugler, Philipp. "Modelling and simulation for preclinical cardiac safety assessment of drugs with human iPSC-derived cardiomyocytes." Jahresbericht der Deutschen 10
Mathematiker-Vereinigung 122.4 (2020): 209-257.



Development of drugs is a costly and
time consuming process

Drug discovery Pre-clinical Clinical trials Regulatory approval

5,000- 10,000 250 5 lnew |
compounds compounds compounds drug
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. Target = In vitro and in
identification and vivo toxicity
validation = ADMET _ - =
. Assay . PK/PD v 9 o
1] o (1]
development £ £ £
. Lead generation
3- 5years 1-2 years 6-7 years 1-2 years

Matthews, Holly & Hanison, James & Nirmalan, Niroshini. (2016). “Omics”-Informed Drug and Biomarker Discovery: Opportunities, Challenges and Future 11
Perspectives. Proteomes. 4. 2. 10.3390/proteomes4030028.



Models can be used to test different
theraphies and optimize treatment

- Find optimal electrode positions for pacemakers

Electrode positions

12



The heart has four chambers

Electrical signal Contraction

SA: Sino Atrial node

AV: Atrioventricular node
RA: Right Atrium

RV: Right ventricle

LA: Left Atrium

LV: Left ventricle

Telle, Ashild. "Modeling cardiac mechanics on a microscale: Mechanical modeling and analysis of cardiomyocytes and cardiac micromuscles." (2022).

Blood flow
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The heart is operating on different
spatial and temporal scales

A

days =+
4

seconds =

milliseconds ==

microseconds=—=

Mechanical
remodelling

Muscle contractlon

Myocard1al

) action potential Vet cular
w Valve opening/ g4 dynamics
closing

Crossbridge
dynamics

| | | ——>

nanometers micrometers millimeters centimeters

Quarteroni, Alfio, et al. "Integrated heart—coupling multiscale and multiphysics models for the simulation of the cardiac
function." Computer Methods in Applied Mechanics and Engineering 314 (2017): 345-407.
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A cell consits of two spaces separated by
a membrane

lon channels Na'— K ion pump

o Na Ok
Extracellular @ 2K*
Lipid bilayer Q ‘ '
o NG K" NG ® )
Intracellular

ATP  ADP+Pi

lons can flow through specialized
channels than can open and close in
response to changes in voltage
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A single ion channel can be open or
closed by one or more gates
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https://www.youtube.com/watch?v=kxnb_TSgmFY &t=2s



A single ion channel can be open or
closed by one or more gates
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We can model a single cardiac cell using
a system of ordinary differential
equations (ODE)

- An system of ordinary differential equation described how a
variables changes over time

- For example a pandemic (using the SIR model)
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To solve the ODEs we use General Ode
TRANslator (Gotran(x))

. Domain S eCiﬁC Language v parameters(
(DSL) for ODEs beta=0.001,

. DESCI‘ibe ODES ln DSL gamma=0. 04

- Generate code in different S
programming languages for 5=997,

solving I=3,
R=0

)

dS_dt = -beta * S * I
https://github.com/finsberg/gotranx dI_dt = beta *x S *x I - gamma * I

https://github.com/ComputationalPhysiology/gotran dR_dt = gamma * I



https://github.com/finsberg/gotranx
https://github.com/ComputationalPhysiology/gotran

Typical state variables are ionic
concentrations, state that controls channel
opening and the voltage

lon channel model Cell model
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Nguyen, Thanh Danh, Olufemi E. Kadri, and Roman S. Voronov. "An introductory overview of
image-based computational modeling in personalized cardiovascular medicine." Frontiers in

Bioengineering and Biotechnology 8 (2020): 529365.

open or

closed Simulated Simulated action
current during potential
voltage clamp
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How can we determine model
parameters?

- For example we need to determine the conductance for each
channel

INa = ?.Bh,j(v — ENa)

24



We can use data from optical
measurements
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Telle, Ashild. "Modeling cardiac mechanics on a microscale: Mechanical modeling and analysis of cardiomyocytes and cardiac micromuscles." (2022). 25



We select a few parameters in the model
and tune them to fit data

v
INna = gNam.3h,j(V — ENa)
C Comparison between data and fitted model
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Jaeger, Karoline Horgmo, et al. "Improved computational identification of drug response using optical measurements of
human stem cell derived cardiomyocytes in microphysiological systems." Frontiers in Pharmacology 10 (2020): 498937. 26



We embed the cell model into the organ-level

model by having one different cell in each point
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Nguyen, Thanh Danh, Olufemi E. Kadri, and Roman S. Voronov. "An introductory overview of
image-based computational modeling in personalized cardiovascular medicine." Frontiers in

Bioengineering and Biotechnology 8 (2020): 529365.



We discretize the geometry into tetraheadra
and assign one heart cell to each node

Gmsh

https://amsh.info

https://defelement.com/ele
ments/lagrange.html

https://github.com/ComputationalPhysiology/cardiac ge

ometries
32


https://defelement.com/elements/lagrange.html
https://defelement.com/elements/lagrange.html
https://github.com/ComputationalPhysiology/cardiac_geometries
https://github.com/ComputationalPhysiology/cardiac_geometries
https://gmsh.info/

We also need vectors that assigns the
direction of the muscle fibers in the heart

- Electrical current travels
faster along the fibers

- Heart tissue is stiffer
along the fibers

cardiac muscle cells

© Encyclopaedia Britannica, Inc.

- The tissue contracts in
the direction of the fibers |

https://github.com/finsberg/ldrb

33


https://github.com/finsberg/ldrb

The heart tissue is stimulated by specialized cells
(called purkinje cells) where the conduction is faster

https://github.com/finsberg/fractal-tree

34


https://github.com/finsberg/fractal-tree

Now we can simulate the electrical
propagation )

¢ fenics-beat

A simplified version of cbcbeat for running cardiac electrophysiology simulations.

« Source code: https://github.com/finsberg/fenics-beat

« Documentation: https://finsberv.github.io/fenics-beat

Install

You can install the library with pip

python3 -m pip install fenics-beat =

NRattin~ eotartad

https://github.com/finsberg/tfenics-beat
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https://github.com/finsberg/fenics-beat

From the electrical model we can compute the
calcium concentration which drives the mechanics

Ca?*

Monodomain/Bidomain Continuum Mechanics

Cellular lonic Model Cellular Myofilament Model
e [ |eCtrical CoOmponent — Mechanical Component se——

Trayanova, Natalia A., and John Jeremy Rice. "Cardiac electromechanical models: from cell to organ." Frontiers in physiology 2 (2011): 43. °



And we can use this to simulate a

beating heart

Time: 0.001000

1.5e+01 ¢

—10

placement Magnitud

I- 0.0e+000

D

https://qgithub.com/marchirschvogel/ambit/tree/master
https://qgithub.com/finsberg/pulse
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https://github.com/marchirschvogel/ambit/tree/master
https://github.com/finsberg/pulse
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In that case we used optimization to find how much
contraction we needed to fit the data

Cellular Myofilament Model

Mechanical Component s—

Trayanova, Natalia A., and John Jeremy Rice. "Cardiac electromechanical models: from cell to organ." Frontiers in physiology 2 (2011): 43. >




To model a drug etfect we can block one
of these channels

membrane
membrane
membrane

Starmer, C. Frank. "How antiarrhythmic drugs increase the rate of sudden cardiac death." International Journal
of Bifurcation and Chaos 12.09 (2002): 1953-1968. 40



To model a drug effect we can block on
of these channels

lon channel model
Na*

O00008 000009
bulk cytosol (c) 1 r -d—t - Tm(V)
Y db he(V) = h
dt T},(V)
d__] JoolV) = J
dt (V)

Simulated
current during
voltage clamp
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https://computationalphysiology.github.io/uio-digital-scholarship-days/single cell/drug effect.html
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https://computationalphysiology.github.io/uio-digital-scholarship-days/single_cell/drug_effect.html

Now you can model a drug effect by
simply changing a parameter in the cell
model and rerunning the simulation

baseline dofetilide 30x
t=50ms = S t=50ms

-100 mV  transmembrane potential +70 mV
E— L.

dofetilide 30x

baseline

0 1000 2000 time [ms] 3000 4000

Kugler, Philipp. "Modelling and simulation for preclinical cardiac safety assessment of drugs with human iPSC-derived cardiomyocytes." Jahresbericht der Deutschen 43

Mathematiker-Vereinigung 122.4 (2020): 209-257.



The equations are solved with FEniCS
(dolfinx / dolfin)

a(u,v) = L(v) Vv e V.

a(u,v) = /Vu Vo de,

L(v) = / fu dzx.

from dolfinx.fem.petsc import LinearProblem ©
problem = LinearProblem(a, L, bcs=[bc], petsc_options={"ksp_type": "preonly", "pc_type": "1
uh = problem.solve()

ufl.dot(ufl.grad(u), ufl.grad(v)) * ufl.dx
f % v x ufl.dx

r Qo

https://isdokken.com/dolfinx-tutorial/

FEniCS is a library for solving partial - ~

differential equations with the finite _ _

element method Presentation earlier
today by Jargen

https://fenicsproject.org L ) 44



https://fenicsproject.org/
https://jsdokken.com/dolfinx-tutorial/

The long term goal is to use models to assist
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Niederer, Steven A., Joost Lumens, and Natalia A. Trayanova. "Computational models in cardiology." Nature reviews cardiology 16.2 (2019): 100-111.
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Summary
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