A beginners guide to cardiac modelling

Henrik Finsberg Simula Summer Festival 06.06.24

What do you think cardiac modeling is all about?

https://gifdb.com/gif/beating-human-heart-3d-real-animation-ndugdstfj863rnow.html

https://insilicotrials.com/working-on-a-new-european-project-that-will-leverage-simulation-to-help-fight-cardiovascular-disease/

Tveito, Jæger, Finsberg, Wall

People in ComPhy are working on different aspects of cardiac

modelling

Blood flow

Valen-Sendstad, Khalili, Kjeldsberg

Mechanics

Finsberg, Sundnes, Wall

Tveito, Jæger, Finsberg, Wall

I am primarily work with cell-models, electrophysiology and mechanics

Blood flow

Valen-Sendstad, Khalili, Kjeldsberg

Mechanics

Finsberg, Sundnes, Wall

I am not a biologist

- 2017-2021: Research engineer
- 2021-present: Senior Research Engineer

CENTER FOR CARDIOLOGICAL **INNOVATION**

drug

drug

drug

Basic anatomy and physiology How to model a membrane RA LV RV Na + Na - Na drug AV

The long term goal is to use models to assist clinicians in the descision making

Niederer, Steven A., Joost Lumens, and Natalia A. Trayanova. "Computational models in cardiology." *Nature reviews cardiology* 16.2 (2019): 100-111.

We can forecast the weather, but would we be able to do the same with the heart?

Models can be used to compute quatities that are difficult / impossible to measure

For example: forces / stresses in the heart

Validation is hard

Development of new biomarkers

Models can be used to test if a drug is safe / efficient

Kügler, Philipp. "Modelling and simulation for preclinical cardiac safety assessment of drugs with human iPSC-derived cardiomyocytes." Jahresbericht der Deutschen 10 Mathematiker-Vereinigung 122.4 (2020): 209-257.

Development of drugs is a costly and time consuming process

Models can be used to test different theraphies and optimize treatment

Find optimal electrode positions for pacemakers

The heart has four chambers

SA: Sino Atrial node

AV: Atrioventricular node

RA: Right Atrium

RV: Right ventricle

LA: Left Atrium

LV: Left ventricle

The heart is operating on different spatial and temporal scales

A cell consits of two spaces separated by a membrane

lons can flow through specialized channels than can open and close in response to changes in voltage

A single ion channel can be open or closed by one or more gates

https://www.youtube.com/watch?v=kxnb_TSqmFY&t=2s

A single ion channel can be open or closed by one or more gates

https://www.youtube.com/watch?v=kxnb TSqmFY&t=2s

We can model a single cardiac cell using a system of ordinary differential equations (ODE)

- An system of ordinary differential equation described how a variables changes over time
- For example a pandemic (using the SIR model)

$$egin{aligned} rac{dS}{dt} &= -eta SI \ rac{dI}{dt} &= eta SI - \gamma I \ rac{dR}{dt} &= \gamma I \end{aligned}$$

To solve the ODEs we use General Ode TRANslator (Gotran(x))

- Domain Specific Language (DSL) for ODEs
- Describe ODEs in DSL
- Generate code in different programming languages for solving

https://github.com/finsberg/gotranx
https://github.com/ComputationalPhysiology/gotran

```
sandbox > sir > ≡ sir.ode
  1 \sim parameters(
           beta=0.001.
           gamma=0.04

√ states(
           S=997.
           I=3,
           R=0
 10
 11
       dS_dt = -beta * S * I
 12
 13
       dI_dt = beta * S * I - gamma * I
       dR_dt = gamma * I
 14
```

Typical state variables are ionic concentrations, state that controls channel opening and the voltage

How can we determine model parameters?

For example we need to determine the conductance for each channel

$$I_{\rm Na} = g_{\rm Na} n^3 h j (V - E_{\rm Na})$$

We can use data from optical measurements

We can mesure the membrane potential and calcium concentration inside the cell using optics

We select a few parameters in the model and tune them to fit data

$$I_{\mathrm{Na}} = g_{\mathrm{Na}} m^3 h j (V - E_{\mathrm{Na}})$$

We embed the cell model into the organ-level model by having one different cell in each point

We discretize the geometry into tetraheadra and assign one heart cell to each node

ometries

32

We also need vectors that assigns the direction of the muscle fibers in the heart

https://github.com/finsberg/ldrb

- Electrical current travels faster along the fibers
 - Heart tissue is stiffer along the fibers
- The tissue contracts in the direction of the fibers

The heart tissue is stimulated by specialized cells (called purkinje cells) where the conduction is faster

https://github.com/finsberg/fractal-tree

Now we can simulate the electrical

propagation

https://github.com/finsberg/fenics-beat

From the electrical model we can compute the calcium concentration which drives the mechanics

And we can use this to simulate a beating heart

https://github.com/marchirschvogel/ambit/tree/master https://github.com/finsberg/pulse

Plot of Pressure vs Volume inside the two chambers

My PhD was about building patient specific computational models of the heart

In that case we used optimization to find how much contraction we needed to fit the data

To model a drug effect we can block one of these channels

Starmer, C. Frank. "How antiarrhythmic drugs increase the rate of sudden cardiac death." *International Journal of Bifurcation and Chaos* 12.09 (2002): 1953-1968.

To model a drug effect we can block on of these channels

Modeling drug effect in a single cell modelling

Drug that block a single channel

Now you can model a drug effect by simply changing a parameter in the cell model and rerunning the simulation

Kügler, Philipp. "Modelling and simulation for preclinical cardiac safety assessment of drugs with human iPSC-derived cardiomyocytes." *Jahresbericht der Deutschen* 43 Mathematiker-Vereinigung 122.4 (2020): 209-257.

The equations are solved with FEniCS (dolfinx / dolfin)

$$a(u,v) = L(v) \qquad orall v \in \hat{V}.$$

$$a(u,v) = \int_{\Omega}
abla u \cdot
abla v \, \mathrm{d}x,$$
 $L(v) = \int_{\Omega} f v \, \mathrm{d}x.$

a = ufl.dot(ufl.grad(u), ufl.grad(v)) * ufl.dx
L = f * v * ufl.dx

from dolfinx.fem.petsc import LinearProblem

problem = LinearProblem(a, L, bcs=[bc], petsc_options={"ksp_type": "preonly", "pc_type": "luh = problem.solve()

https://jsdokken.com/dolfinx-tutorial/

FEniCS is a library for solving partial differential equations with the finite element method

https://fenicsproject.org

Presentation earlier today by Jørgen

The long term goal is to use models to assist clinicians in the descision making

Niederer, Steven A., Joost Lumens, and Natalia A. Trayanova. "Computational models in cardiology." *Nature reviews cardiology* 16.2 (2019): 100-111.

Summary

https://github.com/finsberg/gotranx

https://github.com/finsberg/ldrb

https://github.com/Computational Physiology/cardiac_geometries

https://github.com/finsberg/fenics-beat

https://github.com/finsberg/fractal-tree

https://github.com/finsberg/pulse